

Card Suite
ECOMM Integrated Merchant Agent (IMA)

Administrator's manual
 The process of registration merchant consists of the following stages:

1) To integrate the merchant, we need an IP merchant, from which the merchant gets to our system, access to the IP will open on our firewall.

2) OK and FAIL URL (Client forwarding link after the operation is completed)

3) We will provide you with a certificate(pem12 format) generated on our side, which you must use when performing the operation (see the detailed instructions below)

You must convert this certificate pem12 to pem with openssl library.

openssl pkcs12 -in *.p12 -out *.pem
TRANSACTION GENERATION EXAMPLE:

<?php

 $curl = curl_init();

 $post_fields = "command=v&amount=500¤cy=981&client_ip_addr=127.0.0.1&language=EN&description=UFCTEST&msg_type=SMS";

 $submit_url = "https://ecommerce.ufc.ge:18443/ecomm2/MerchantHandler";

Curl_setopt($curl, CURLOPT_SSLVERSION, 0);

curl_setopt($curl, CURLOPT_POSTFIELDS, $post_fields);

 curl_setopt($curl, CURLOPT_VERBOSE, '1');

 curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, '0');

 curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, '0');

 curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($curl, CURLOPT_TIMEOUT, 120);

curl_setopt($curl, CURLOPT_SSLCERT, getcwd().'/sertificate1.pem');

curl_setopt($curl, CURLOPT_SSLKEYPASSWD, 'AAAaaa123456');

 curl_setopt($curl, CURLOPT_URL, $submit_url);

 $result = curl_exec($curl);

 $info = curl_getinfo($curl);

if(curl_errno($curl))

{

 echo 'curl error:' . curl_error($curl)."
";

}

 curl_close($curl);

echo $result; // данный параметр лишь для наглядности , чтоб выдать trans ID.

$curl = curl_init();

?>

[image: image1.png]Program Fil GnuWin32\bin\openss

OpenSSL> pkesi2 —in c.pi2 -out sert.pem

ot Passuord:

[Enter PEM pass phrase:
Uerifying - Enter PEM pass phrase:

OpenSSL>

[image: image2.png]Program Fil GnuWin32\bin\openss

OpenSSL> pkesi2 —in c.pi2 -out sert.pem

ot Passuord:

[Enter PEM pass phrase:
Uerifying - Enter PEM pass phrase:

OpenSSL>

READRESSING THE CLIENT:
<html>
<head>
<title>Merchant example post template to ECOMM</title>
<script type='text/javascript' language='javascript'>
function redirect() {
 document.returnform.submit();
}
</script>
</head>
<body onLoad='javascript:redirect()'>
<form name='returnform' action='https://ecommerce.ufc.ge/ecomm2/ClientHandler' method='POST'>
 <input type='hidden' name='trans_id' value=’generated transaction id'>

<noscript>
 <center>Please click the submit button below.

 <input type='submit' name='submit' value='Submit'></center>
</noscript>
</form>

</body>
</html>
3.2.1 Registering transactions
Command line parameters:
-v identifies a request for transaction registration
amount transaction amount in fractional units, mandatory (up to 12 digits) currency transaction currency code (ISO 4217), mandatory, (3 digits) client_ip_addr client’s IP address, mandatory (15 characters)

description transaction details, optional (up to 125 characters)

language authorization language identifier, optional (up to 32 characters)

Http post parameters:
command=v&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&description=<des c>&language=<language>&msg_type=SMS(&<property_name>=<property_value>)*

Result:
 TRANSACTION_ID: <trans_id>

trans_id transaction identifier (28 characters in base64 encoding) In case of an error, the returned string of symbols begins with ‘error:‘.
Example of the result:
 TRANSACTION_ID: bAt6JLX52DUbibbzD9gDFl5Ppr4=

3.2.2 Registering DMS authorization
Command line parameters:
-a identifies a request for transaction registration
amount transaction amount in fractional units, mandatory (up to 12 digits) currency transaction currency code (ISO 4217), mandatory, (3 digits) client_ip_addr client’s IP address, mandatory (15 characters)

description transaction details, optional (up to 125 characters)

language authorization language identifier, optional (up to 32 characters)

Method call:
public String

startDMSAuth(String amount, String currency, String ip, String desc, String language, Properties properties)

// old methods for backward compatibility public String

startDMSAuth(String amount, String currency, String ip, String desc, String language)

public String

startDMSAuth(String amount, String currency, String ip, String desc, String language)

Http post parameters:
command=a&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&description=<des c>&language=<language>&msg_type=DMS(&<property_name>=<property_value>)*

Result:
 TRANSACTION_ID: <trans_id>

trans_id transaction identifier (28 characters in base64 encoding) In case of an error, the returned string of symbols begins with ‘error:‘
Example of the result:
 TRANSACTION_ID: bAt6JLX52DUbibbzD9gDFl5Ppr4=

3.2.3 Executing a DMS transaction
Command line parameters:
-t identifies a request for transaction registration auth_id identifies authorization of a financial transaction
amount transaction amount in fractional units, mandatory (up to 12 digits) currency transaction currency code (ISO 4217), mandatory, (3 digits) client_ip_addr client’s IP address, mandatory (15 characters)

description transaction details, optional (up to 125 characters)

Method call:
public String

makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc, String language, Properties properties)

// old methods for backward compatibility
public String

makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc, String language)

public String

makeDMSTrans(String auth_id, String amount, String currency, String ip, String desc)

Http post parameters:
command=t&trans_id=<auth_id>&amount=<amount>¤cy=<currency>&client_ip_addr=<i p>&description=<desc>&language=<language>&msg_type=DMS(&<property_name>=<property_ value>)*

Results:
RESULT: <result> RESULT_CODE: <result_code> RRN: <rrn>

APPROVAL_CODE: <app_code> CARD_NUMBER <pan>

result – transaction results: OK – successful transaction, FAILED – failed transaction result_code – transaction result code returned from Card Suite Processing RTPS (3 digits) rrn – retrieval reference number returned from Card Suite Processing RTPS (12 characters) app_code – approval code returned from Card Suite Processing RTPS (max 6 characters) pan – masked card number

RESULT_CODE fields are informative only. The fields RRN and APPROVAL_CODE appear only for successful transactions, for informative purposes, and they facilitate tracking the transactions in the Card Suite Processing RTPS system. The decision as to whether a transaction was successful or failed must be based on the value of RESULT field only.
In case of an error, the returned string of symbols begins with ‘error:‘.
In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Example of the result: RESULT: OK RESULT_CODE: 000

RRN: 123456789012
APPROVAL_CODE: 123456

CARD_NUMBER: 9***********9999

3.2.4 Transaction result
Command line parameters:
-c identifies a request for transaction result

trans_id transaction identifier, mandatory (28 characters)

client_ip_addr client's IP address, mandatory (15 characters)

Method call:
public String

getTransResult(String trans_id, String ip)

public String

getTransResult(String trans_id, String ip, Properties properties)

Http post parametri:
command=c&trans_id=<trans_id>&client_ip_addr=<ip>(&<property_name>=<property_value

>)*
Result:
RESULT: <result> RESULT_PS: <result_ps> RESULT_CODE: <result_code>

3DSECURE: <3dsecure> RRN: <rrn>

APPROVAL_CODE: <app_code> CARD_NUMBER: <pan>

AAV: <aav>

RECC_PMNT_ID: <rcc_pmnt_id> RECC_PMNT_EXPIRY: <rcc_pmnt_ex> MRCH_TRANSACTION_ID: <mrch_tx_id>

result – transaction result status:

OK – successfully completed transaction, FAILED – transaction has failed,
CREATED – transaction just registered in the system, PENDING – transaction is not accomplished yet,
DECLINED – transaction declined by ECOMM, because ECI is in blocked ECI list (ECOMM
server side configuration),
REVERSED – transaction is reversed,
AUTOREVERSED – transaction is reversed by autoreversal, TIMEOUT – transaction was timed out

FINISHED – successfully completed payment, CANCELLED – cancelled payment, RETURNED – returned payment,
ACTIVE – registered and not yet completed payment.
result_code – transaction result code returned from Card Suite Processing RTPS (3 digits)

3dsecure – 3D Secure status:

AUTHENTICATED – successful 3D Secure authorization
DECLINED – failed 3D Secure authorization
NOTPARTICIPATED – cardholder is not a member of 3D Secure scheme NO_RANGE – card is not in 3D secure card range defined by issuer ATTEMPTED – cardholder 3D secure authorization using attempts ACS server UNAVAILABLE – cardholder 3D secure authorization is unavailable
ERROR – error message received from ACS server

SYSERROR – 3D secure authorization ended with system error

UNKNOWNSCHEME – 3D secure authorization was attempted by wrong card scheme
(Dinners club, American Express)

rrn – retrieval reference number returned from Card Suite Processing RTPS
app_code – approval code returned from Card Suite Processing RTPS (max 6 characters)

pan – Masked card number

aav – the results of the verification of hash value in AAV merchant name (only if failed) FAILED – hash value fails to match
rcc_pmnt_id – Reoccurring payment (if available) identification in Payment Server.
rcc_pmnt_ex – Reoccurring payment (if available) expiry date in Payment Server in form of
YYMM
mrch_tx_id – Merchant Transaction Identifier (if available) for Payment – shown if it was sent as additional parameter with name “mrch_transaction_id” on Payment registration.
The RESULT_CODE and 3DSECURE fields are informative only and can be not shown. The fields RRN and APPROVAL_CODE appear for successful transactions only, for informative purposes, and they facilitate tracking the transactions in Card Suite Processing RTPS system. The decision as to whether a transaction was successful or failed must be based on the value of RESULT field only.
In case of an error, the returned string of symbols begins with ‘error:‘.
In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Example of the result: RESULT: OK RESULT_PS: FINISHED RESULT_CODE: 000

3DSECURE: ATTEMPTED
RRN: 123456789012

APPROVAL_CODE: 123456

CARD_NUMBER: 9***********9999

RECC_PMNT_ID: 1258

RECC_PMNT_EXPIRY: 1108

3.2.5 Transaction reversal
Command line parameters:
-r identifies a request for transaction reversal trans_id transaction identifier, mandatory (28 characters)

amountoptional parameter - reversal amount in fractional units (up to 12 characters). For DMS authorizations only full amount can be reversed, i.e., the reversal and authorization amounts have to match. In other cases partial reversal is also available.
suspected_fraud optional parameter – flag, indicating that transaction is being reversed because of suspected fraud. In such cases this parameter’s value should be set to “yes”. If this parameter is used, then only full reversals are allowed.
Method call:
public String reverse(String trans_id)

public String

reverse(String trans_id, String amount)

public String

reverse(String trans_id, String amount, String suspected_fraud)

public String

reverse(String trans_id, Properties properties)

public String

reverse(String trans_id, String amount, Properties properties)

public String

reverse(String trans_id, String amount, String suspected_fraud, Properties properties)

Http post parameters:
command=r&trans_id=<trans_id>&amount=<amount>(&<property_name>=<property_value>)*

command=r&trans_id=<trans_id>&amount=<amount>&suspected_fraud=yes(&<property_name>

=<property_value>)*
Result:
RESULT: <result> RESULT_CODE: <result_code>

result – reversal results:

OK – successful reversal transaction
REVERSED – transaction has already been reversed
FAILED – failed to reverse transaction (transaction status remains as it was)

result_code – reversal result code returned from Card Suite Processing RTPS (3 digits) In case of an error, the returned string of symbols begins with ‘error:‘.
In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use).
Example of the result: RESULT: OK RESULT_CODE: 400

3.2.6 Transaction refund
Command line parameters:
-k identifies a request for transaction refund
trans_id transaction identifier, mandatory (28 characters), full original transaction amount is always refunded
Method call: public String refund(String trans_id)

public String

refund(String trans_id, Properties properties)

Http post parameters: command=k&trans_id=<trans_id>(&<property_name>=<property_value>)*
 Result:
RESULT: <result> RESULT_CODE: <result_code> REFUND_TRANS_ID: <refund_transaction_id>

result – Refund results:

OK successful refund transaction
FAILED failed refund transaction
result_code – result code returned from Card Suite Processing RTPS (3 digits)

refund_transaction_id refund transaction identifier – applicable for obtaining refund payment details or to request refund payment reversal.
In case of an error, the returned string of symbols begins with ‘error:‘.
In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use). Transaction status in payment server after refund is not changed.
3.2.7 Credit transaction
Command line parameters:
-g identifies a request for credit transaction
trans_id original transaction identifier, mandatory (28 characters)

amountoptional parameter – credit transaction amount in fractional units (up to 12 characters). If not specified, full original transaction amount will be credited.
Method call: public String credit(String trans_id)

public String

credit(String trans_id, Properties properties)

public String

credit(String trans_id, String amount)

public String

credit(String trans_id, String amount, Properties properties)

Http post parameters: command=g&trans_id=<trans_id>&amount=<amount>(&<property_name>=<property_value>)* Result:
RESULT: <result>
RESULT_CODE: <result_code> REFUND_TRANS_ID: <refund_transaction_id>

result – Refund results:

OK successful credit transaction
FAILED failed credit transaction
result_code – result code returned from Card Suite Processing RTPS (3 digits)

refund_transaction_id credit transaction identifier – applicable for obtaining credit payment details or to request credit payment reversal.
In case of an error, the returned string of symbols begins with ‘error:‘.
In case of a warning, the returned string of symbols begins with ‘warning:’ (reserved for future use). Original transaction status in payment server after credit transaction is not changed.
3.2.8 End of business day
Business day ends on closing the last opened batch for a particular merchant.
Command line parameters:
-b identifies a request for the end of business day

Method call: public String closeDay()

public String closeDay(Properties properties)

Http post parameters:
command=b(&<property_name>=<property_value>)*

Result:
RESULT: <result> RESULT_CODE: <result_code> FLD_075: <fld_075>

FLD_076: <fld_076> FLD_087: <fld_087> FLD_088: <fld_088>

result – end-of-business-day results:

OK successful end of business day

FAILED failed end of business day

result_code – end-of-business-day code returned from Card Suite Processing RTPS (3 digits)

fld_075 – the number of credit reversals (up to 10 digits), shown only if result_code begins with 5 fld_076 – the number of debit transactions (up to 10 digits), shown only if result_code begins with
5
fld_087 – total amount of credit reversals (up to 16 digits), shown only if result_code begins with 5 fld_088 – total amount of debit transactions (up to 16 digits), shown only if result_code begins
with 5
In case of an error, the returned string of symbols begins with ‘error:‘
Example of the result: RESULT: OK RESULT_CODE: 500

FLD_075: 12
FLD_076: 31

FLD_087: 3201

FLD_088: 10099

3.2.9 Regular payments
Regular payments are registered either along with an authorization for a determined on the bank’s/proc. centeres server side amount (to check that the card is ok) without the actual transaction happening or along with the first payment, in SMS or DMS mode. The regular payments functionality is described in chapter 3.2.14. The rec_pmnt_id parameter in JAVA call may be unspecified; in such an event, TRANSACTION_ID becomes the identifier of a regular payment.
3.2.9.1 Registration
Command line parameters for registration along with the first payment:
-z request for authorization registration
amount

transaction amount in fractional units, mandatory (up to 12 digits) currency transaction currency code (ISO 4217), mandatory, (3 digits) client_ip_addr client’s IP address, mandatory (15 characters)
description transaction details (up to 125 characters) biller_client_id merchant-selected regular payment identifier expiry preferred deadline for a regular payment MMYY
Command line parameters for registration with an authorization for a certain amount, without the first payment:
-p request for authorization and registration
currency transaction currency code (ISO 4217), mandatory, (3 digits)

client_ip_addr client’s IP address, mandatory (15 characters) description transaction details (up to 125 characters) rec_pmnt_id merchant-selected regular payment identifier expiry preferred deadline for a regular payment MMYY
Method call:
public String startSMSTransRP(String amount, String currency,

String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)

public String startDMSAuthRP(String amount, String currency,

String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)

public String registerRP(String currency, String ip, String desc, String language, String recc_pmnt_id, String expiry, Properties properties)

Http post parameters:
command=z&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&description=<des c>&language=<language>&msg_type=SMS&biller_client_id=<recc_pmnt_id>&perspayee_expi ry=<expiry>&perspayee_gen=1

command=p¤cy=<currency>&client_ip_addr=<ip>&description=<desc>&language=<lan guage>&msg_type=AUTH&biller_client_id=<recc_pmnt_id>&perspayee_expiry=<expiry>&per spayee_gen=1

Response to registration request is analogic to startSMSTrans, registerRP calls,
except for additional fields as follows:

RECC_PMNT_ID: rec_pmnt_id, if specified, othervise TRANSACTION_ID RECC_PMNT_EXP min (card expiry date, expiry parameters).
For DMS, transactions are being generated through the same makeDMSTrans call.
Overwriting existing recurring payments:
If recurring payment for current client (card) is already defined for template, it needs to be overwritten. Overwriting recurring payments can be done by specifying additional parameter perspayee_overwrite=1. In this case all existing recurring payments for template defined for current client (card) will be deleted.
In command line additional parameter can be added at the end of mandatory parameters with syntax:

--parameter_name=parameter_value.
In method call it can be added in properties variable.
In Http post parameters it can be added as usual parameter (as shown in examples above).
3.2.10 Execution
Command line parameters:
-e request for SMS transaction registration
amounttransaction amount in fractional units, mandatory (up to 12 digits) currency transaction currency code (ISO 4217), mandatory, (3 digits) client_ip_addr client’s IP address, mandatory (15 characters)

description transaction details (up to 125 characters)

rec_pmnt_id merchant-selected regular payment identifier

Method call:
public String makeRP(String recc_pmnt_id, String amount, String currency, String ip, String desc, Properties properties)

Http post parameters:
command=e&amount=<amount>¤cy=<currency>&client_ip_addr=<ip>&description=<des c>&language=<language>&biller_client_id=<recc_pmnt_id>(&<property_name>=<property_ value>)*

Result:
TRANSACTION_ID: <trans_id> RESULT: <result> RESULT_CODE:<result_code> RRN:<rrn> APPROVAL_CODE:<appr_code>

trans_id – transaction identifier (28 characters in base64 encoding)

result – transaction results: OK – successful transaction, FAILED – failed transaction
In case of regular payment some result codes have additional meanings:

108 – Merchant communication with cardholder has to be done;

114 – It is possible to try to execute the transaction next time;

180 – Cardholder ended cooperation. Regular payment has been deleted;

2xx – Regular payment has been deleted.
In case of an error, the returned string of symbols begins with ‘error:‘
3.2.11 Applying the Properties parameter
Through the Properties parameter more details can be provided for Payment Server. Parameter application is conditional on a solution and described in the documentation thereof. One of the applications is flight ticket itinerary details.
Properties parameters can be entered in the command line calls as follows:

<Ecomm command line call> --<property_name1>=<property_value1>

--<property_name2=<property_value2> …

3.2.12 Readdressing the client
The client can be readdressed (to enter card data) to the bank-specified URL applying the GET or POST method. It is important that the trans_id variable is transferred during readdressing. This variable contains the identifier of a transaction which has to be paid up. (Note that trans_id can include the characters ‘+’, ‘=’ and ‘/’ which must be replaced with web-friendly series (for example, ‘=’ with ‘%3D’) before it is sent. In Java environment this can be done applying the URLEncoder.encode method). Additional parameters can be transferred during the readdressing, which will be returned back to the merchant as the client is being readdressed to the merchant page.
An example of the POST method applied using JavaScript is found in the
‘example/client_to_ecomm.html’ directory and is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Merchant example post template to ECOMM</title>

<script type="text/javascript" language="javascript">

function redirect() {

document.returnform.submit();
}

</script>

</head>

<body onLoad="javascript:redirect()">

<form name="returnform" action="%%post_url%%" method="POST">

<input type="hidden" name="trans_id" value="%%trans_id%%">

<!-- To support javascript unaware/disabled browsers -->

<noscript>

<center>Please click the submit button below.

<input type="submit" name="submit" value="Submit"></center>

</noscript>

</form>

</body>

</html>

The string of symbols %%post_url%% in the example has to be replaced with the URL of ECOMM
server provided by the bank, while %%trans_id%% - with transaction identifier.
© 2008
MerchantIdentifier – merchant identifier (optional if IMA is used, mandatory when using HTTP POST requests directly).
These fields should be sent as additional details (see sections about each request).
© 2008

